. TĂNANÎ DINÎ ÎNDÎ ÎN ÎNDÎ ÎN ÎNDÎ ÎN ÎNDÎ ÎN ÎNDÎ ÎNDÎ

Seat No.

HAJ-003-2015025

B. Sc. (Sem. V) (CBCS) Examination May - 2023

Physics : Paper-501

Faculty Code : 003 Subject Code : 2015025

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions :

- (1) Attempt all questions.
- (2) Make suitable assumption wherever necessary.
- (3) Figure on the right indicates full marks.
- (4) Non programmable calculator is permitted.
- (5) Notations have their usual meaning.

1 (a) Write answer of following questions :

- (1) Write Fourier Series for interval $(-\pi \text{ to } +\pi)$.
- (2) Write DIRICHLET'S condition.
- (3) Write one advantage of Fourier series.
- (4) Write the complex form of Fourier Series.
- (b) Answer any one :
 - (1) Develop f(x) in Fourier series in the interval (-2,2)

if f(x) = 0 for -2 < x < 0 and f(x) = 1 for 0 < x < 2.

(2) Find the Fourier integrals of the function

$$f(x) = 0, \frac{1}{2}$$
 or e^{-x} for $x < 0, x = 0$ or $x > 0$
respectively.

- (c) Answer any **one** :
 - (1) Explain Parseval's theorem.
 - (2) Obtain Fourier series for a triangle wave.

1

HAJ-003-2015025]

4

2

3

[Contd...

			of the orbit of the particle.	
		(2)	Derive the Euler-Lagrange differential equation.	
	(c)	Ans	wer any one :	
		(1)	Derive Newton's second law of motion from Hamil principle.	lton's
		(2)	Explain the principle of virtual work.	
	(d)	Answer any one :		
		(1)	Derive Lagrange's equation of motion from Hamil principle.	lton's
		(2)	Derive Lagrange's equation of motion for simple pendulum.	
3	(a)	Write answer of following questions :		
		(1)	Define phase space.	
		(2)	Write Lagrange's equations for non-holonomic sys	stem.
		(3)	Configuration space is a dimensional space	e.
		(4)	According to Hamilton's principle, the path follows a system is such that Time integral of L is minin (True/False)	ed by nize.
HAJ	1-003-	20150)25] 2	[Cont

(b) Answer any **one** :

a plane?

system.

(d) Answer any **one** :

(2)

(2)

(4)

2

(a)

(1) A particle of mass m moves on a plane in the field of force given by $F = rkr\cos\theta$. Where k is constant and r is the radial unit vector. Obtain the difference equation

(1) Obtain Fourier series for a full wave rectifier.

co-efficient of Fourier Series.

Write answer of following questions :

(1) Define the term Constraint.

(3) Lagrangian L =

Give definition of Fourier Series and derive the

What is the degree of freedom for a particle moving in

Write Lagrange equation of motion for conservative

HAJ-003-2015025]

2

5

4

5

4

3

- (b) Answer any **one** :
 - (1) A particle is moving near the surface of earth. The kinetic and potential energy of the particle is

$$T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$$
 and V = mgz. Deduce Hamilton's

equations of motion for such conservative system.

(2) Calculate Hamiltonian of a system having Lagrangian is

$$L = \frac{1}{2}m(\dot{y}^2 + l^2\dot{\theta}^2 + 2\dot{y}l\dot{\theta}\cos\theta) - mgl(1 - \cos\theta).$$

- (c) Answer any **one** :
 - (1) Give the advantages of Lagrangian approach.
 - (2) Explain application of Lagrange's method of undetermined multipliers in simple pendulum.
- (d) Answer any **one** :
 - (1) Derive Hamilton's canonical equations of motion.
 - (2) Explain Hamiltonian for a charged particle in an electromagnetic field.

4 (a) Write answer of following questions :

- (1) What is normalization condition ?
- (2) $1 \text{ev} = _$ Joule.
- (3) Write Uncertainty Principle.
- (4) Define commutator.

(b) Answer any **one** :

- (1) An electron of momentum 8×10^{-19} gm cm / sec is passed through a circular hole of radius 10^{-4} cm. What is the uncertainty introduced in the angle of emergence ? Take h = 10^{-27} erg sec.
- (2) Normalized the wave function $\Psi(x) = A \cdot e^{ikx}$ over the region -a < x < a.

(c) Answer any **one** :

- (1) Give Physical interpretation of Ψ .
- (2) Explain Wave Functions and Box Normalization.

(d) Answer any **one** :

- (1) Explain Particle in a one dimensional potential well of finite depth.
- (2) Derive three dimensional Schrödinger equation.

3

[Contd...

3

5

4

2

3

5

- 5 (a) Write answer of following questions :
 - (1) Write angular momentum operator.
 - (2) The eigenvalues of L^2 are _____.
 - (3) Write the eigenvalue equation.
 - (4) Give necessary and sufficient condition for an operator to be a null operator.
 - (b) Answer any **one** :
 - (1) The speed of an electron $(m=1.67 \times 10^{-31} kg)$ is measured in experiment to be $5 \times 10^6 m/s$ the value from this measurement has an uncertainty of 10%. Estimate the minimum uncertainty in the position.

(2) If
$$H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 x^2$$
, then prove that $[x, H] = \frac{ihP}{m}$

- (c) Answer any **one** :
 - (1) Explain the eigenfunctions of linear harmonic oscillator.
 - (2) Write the fundamental Postulates of Wave Mechanics.

(d) Answer any **one** :

- (1) Derive solution of one dimensional time dependent Schrodinger equation.
- (2) Eigen values and Eigen functions of Self-Adjoint Operators.

4

3

5

2